Product Manager:Maureen AllerProject Editor:Susan FoxPackaging design:Jonathan Pennell

Library of Congress Cataloging-in-Publication Data

Catalog record is available from the Library of Congress.

These files shall remain the sole and exclusive property of CRC Press LLC, 2000 Corporate Blvd., N.W., Boca Raton, FL 33431. The contents are protected by copyright law and international treaty. No part of the *Measurement, Instrumentation, and Sensors Handbook CRCnetBASE 1999* CD-ROM product may be duplicated in hard copy or machine-readable form without prior written authorization from CRC Press LLC, except that the licensee is granted a limited, non-exclusive license to reproduce limited portions of the context for the licensee's internal use provided that a suitable notice of copyright is included on all copies. This CD-ROM incorporates materials from other sources reproduced with the kind permission of the copyright holder. Credit to the original sources and copyright notices are given with the figure or table. No materials in this CD-ROM credited to these copyright holders may be reproduced without their written permission.

WARRANTY

The information in this product was obtained from authentic and highly regarded sources. Every reasonable effort has been made to give reliable data and information, but the publisher cannot assume responsibility for the validity of all materials or the consequences of their uses.

© 1999 by CRC Press LLC

No claim to original U.S. Government works International Standard Book Number 0-8493-2145-X International Standard Series Number 1523-3014

Preface

Introduction

The purpose of *Measurement, Instrumentation, and Sensors Handbook CRCnetBase 1999* is to provide a reference that is both concise and useful for engineers in industry, scientists, designers, managers, research personnel and students, as well as many others who have measurement problems. The *CD-ROM* covers an extensive range of topics that comprise the subject of measurement, instrumentation, and sensors.

The *CD-ROM* describes the use of instruments and techniques for practical measurements required in engineering, physics, chemistry, and the life sciences. It includes sensors, techniques, hardware, and software. It also includes information processing systems, automatic data acquisition, reduction and analysis and their incorporation for control purposes.

Articles include descriptive information for professionals, students, and workers interested in measurement. Articles include equations to assist engineers and scientists who seek to discover applications and solve problems that arise in fields not in their specialty. They include specialized information needed by informed specialists who seek to learn advanced applications of the subject, evaluative opinions, and possible areas for future study. Thus, the *CD-ROM* serves the reference needs of the broadest group of users — from the advanced high school science student to industrial and university professionals.

Organization

The *CD-ROM* is organized according to the *measurement problem*. Section I includes general instrumentation topics, such as accuracy and standards. Section II covers spatial variables, such as displacement and position. Section III includes time and frequency. Section IV covers solid mechanical variables such as mass and strain. Section V comprises fluid mechanical variables such as pressure, flow, and velocity. Section VI covers thermal mechanical variables such as temperature and heat flux. Section VII includes electromagnetic variables such as voltage and capacitance. Section VIII covers optical variables such as photometry and image sensors. Section IX includes radiation such as x rays and dosimetry. Section X covers chemical variables in composition and environmental measurements. Section XI includes biomedical variables such as blood flow and medical imaging. Section XII comprises signal processing such as amplifiers and computers. Section XIII covers display such as cathode ray tube and recorder. Section XIV includes control such as optimal control and motion control. The Appendix contains conversion factors to SI units.

Locating Your Topic

To find out how to measure a given variable, do a word or phrase search, select the section and the chapters that describe different methods of making the measurement. Consider the alternative methods of making the measurement and each of their advantages and disadvantages. Select a method, sensor,

^{© 1999} by CRC Press LLC

and signal processing method. Many articles list a number of vendors to contact for more information. You can also visit the http://www.sensorsmag.com site under Buyer's Guide to obtain a list of vendors.

Acknowledgments

I appreciate the help of the many people who worked on this handbook. David Beams assisted me by searching books, journals, and the Web for all types of measurements, then helped me to organize the outline. The Advisory Board made suggestions for revision and suggested many of the authors. Searching the INSPEC database yielded other authors who had published on a measurement method. At CRC Press, Felicia Shapiro, Associate Production Manager;Kristen Maus, Developmental Editor; Suzanne Lassandro, Book Group Production Director; and Susan Fox, Project Editor, produced the book.

John G. Webster Editor-in-Chief

Editor-in-Chief

John G. Webster received the B.E.E. degree from Cornell University, Ithaca, NY, in 1953, and the M.S.E.E. and Ph.D. degrees from the University of Rochester, Rochester, NY, in 1965 and 1967, respectively.

He is Professor of Electrical and Computer Engineering at the University of Wisconsin-Madison. In the field of medical instrumentation he teaches undergraduate and graduate courses, and does research on RF cardiac ablation and measurement of vigilance.

He is author of Transducers and Sensors, An IEEE/EAB Individual Learning Program (Piscataway, NJ: IEEE, 1989). He is co-author, with B. Jacobson, of *Medicine and Clinical Engineering* (Englewood Cliffs, NJ: Prentice-Hall, 1977), with R. Pallás-Areny, of Sensors and Signal Conditioning (New York: Wiley, 1991), and with R. Pallas-Areny, of Analog Signal Conditioning (New York: Wiley, 1999). He is editor of Encyclopedia of Medical Devices and Instrumentation (New York: Wiley, 1988), Tactile Sensors for Robotics and Medicine (New York: Wiley, 1988), Electrical Impedance Tomography (Bristol, UK: Adam Hilger, 1990), Teaching Design in Electrical Engineering (Piscataway, NJ: Educational Activities Board, IEEE, 1990), Prevention of Pressure Sores: Engineering and Clinical Aspects (Bristol, UK: Adam Hilger, 1991), Design of Cardiac Pacemakers (Piscataway, NJ: IEEE Press, 1995), Design of Pulse Oximeters (Bristol, UK: IOP Publishing, 1997), Medical Instrumentation: Application and Design, Third Edition (New York: Wiley, 1998), and Encyclopedia of Electrical and Electronics Engineering (New York, Wiley, 1999). He is co-editor, with A. M. Cook, of *Clinical Engineering: Principles and Practices* (Englewood Cliffs, NJ: Prentice-Hall, 1979) and Therapeutic Medical Devices: Application and Design (Englewood Cliffs, NJ: Prentice-Hall, 1982), with W. J. Tompkins, of Design of Microcomputer-Based Medical Instrumentation (Englewood Cliffs, NJ: Prentice-Hall, 1981) and Interfacing Sensors to the IBM PC (Englewood Cliffs, NJ: Prentice Hall, 1988), and with A. M. Cook, W. J. Tompkins, and G. C. Vanderheiden, Electronic Devices for Rehabilitation (London: Chapman & Hall, 1985).

Dr. Webster has been a member of the IEEE-EMBS Administrative Committee and the NIH Surgery and Bioengineering Study Section. He is a fellow of the Institute of Electrical and Electronics Engineers, the Instrument Society of America, and the American Institute of Medical and Biological Engineering. He is the recipient of the AAMI Foundation Laufman-Greatbatch Prize and the ASEE/Biomedical Engineering Division, Theo C. Pilkington Outstanding Educator Award.

^{© 1999} by CRC Press LLC

Advisory Board

Gene Fatton Consultant Loveland, Colorado

Jacob Fraden Advanced Monitors Corporation San Diego, California

James E. Lenz Honeywell Technology Center Minneapolis, Minnesota

Ramón Pallás-Areny Universitat Politecnica de Catalunya Barcelona, Spain **Dennis Swyt**

National Institute of Standards and Technology Gaithersburg, Maryland

Peter H. Sydenham

University of South Australia Mawsons Lakes South Australia and University College, London London, UK

Carsten Thomsen

National Instruments Austin, Texas

Contributors

Rene G. Aarnink University Hospital Nijmegen Nijmegen, The Netherlands

Mushtaq Ali The National Grid Company Leatherhead, Surrey, England

Joseph H. Altman Pittsford, New York

A. Ambrosini Institute of Radioastronomy National Research Council Via Fiorentina Villa Fontano, Italy

Jeff P. Anderson LTV Steel Corporation Independence, Ohio

Keith Antonelli Kinetic Sciences, Inc. Vancouver, B.C., Canada

John C. Armitage Ottawa–Carleton Institute for Physics Carleton University Ottawa, Ontario, Canada

Pasquale Arpaia Università di Napoli Federico II Naples, Italy

Per Ask

Department of Biomedical Engineering Linkoping University Linkoping, Sweden **Marc J. Assael** Faculty of Chemical Engineering Aristotle University of Thessaloniki Thessalonika, Greece

Viktor P. Astakhov Mechanical Engineering Department Concordia University Montreal, Quebec, Canada

Francesco Avallone Università di Napoli Federico II Naples, Italy

Aldo Baccigalupi Università di Napoli Federico II Naples, Italy

William E. Baker Mechanical Engineering Department University of New Mexico Albuquerque, New Mexico

W. John Ballantyne Systems Engineering Department Spar Aerospace Ltd. Brampton, Ontario, Canada

Amit Bandyopadhyay Department of Ceramic Science and Engineering Rutgers University Piscataway, New Jersey

Partha P. Banerjee Electrical and Computer Engineering Department University of Alabama – Huntsville Huntsville, Alabama **William A. Barrow** Planar Systems Beaverton, Oregon

Cipriano Bartoletti University of Rome "La Sapieriza" Rome, Italy

L. Basano Dipartimento de Fisica Università di Genova Genova, Italy

M.W. Bautz Pennsylvania State University University Park, Pennsylvania

William H. Bayles The Fredericks Company Huntington Valley, Pennsylvania

David M. Beams Department of Electrical Engineering University of Texas at Tyler Tyler, Texas

K. Beilenhoff Institut für Hochfrequenztechnik, Technische Universität Darmstadt Muenchen, Germany

B. Benhabib

Department of Mechanical and Industrial Engineering University of Toronto Toronto, Ontario, Canada

Michael Bennett Willison Associates

Manchester, England

Vikram Bhatia Virginia Tech Blacksburg, Virginia

Richard J. Blotzer LTV Steel Corporation Independence, Ohio

A. Bonen University of Toronto Toronto, Ontario, Canada

C. Bortolotti Institute of Radioastronomy National Research Council Via Fiorentina Villa Fontano, Italy

Howard M. Brady The Fredericks Company Huntington Valley, Pennsylvania

Arnaldo Brandolini Dipartimento di Elettrotecnica Politecnico di Milano Milano, Italy

John C. Brasunas NASA/Goddard Space Flight Center Greenbelt, Maryland

Detlef Brumbi Krohue Messtechnik GmbH Diusburg, Germany

Christophe Bruttin Rittmeyer Ltd. Zug, Switzerland

Saps Buchman Stanford University Stanford, California

Wolfgang P. Buerner Los Angeles Scientific Instrumentation Los Angeles, California

B.E. Burke Pennsylvania State University University Park, Pennsylvania

Jim Burns Burns Engineering Inc. Minnetonka, MN **Barrett Caldwell** University of Wisconsin–Madison Madison, Wisconsin

Robert B. Campbell Sandia National Laboratories Livermore, California

Claudio de Capua Università di Napoli Federico II Napoli, Italy

Kevin H.L. Chau Micromachined Products Division Analog Devices Cambridge, Massachusetts

Adam Chrzanowski University of New Brunswick Fredericton, N.B., Canada

Richard O. Claus Bradley Department of Electrical Engineering Virginia Tech Blacksburg, Virginia

Charles B. Coulbourn Los Angeles Scientific Instrumentation Co. Los Angeles, California

Bert M. Coursey Ionizing Radiaiton Division, Physics Laboratory National Institute of Standards and Technology Gaithersburg, Maryland

Robert F. Cromp NASA/Goddard Space Flight Center Greenbelt, Maryland

Robert M. Crovella NVIDIA Corporation Plano, Texas

Brian Culshaw Department of Electronic and Electrical Engineering University of Strathclyde Royal College Building Glasgow, England **G. Mark Cushman** NASA/Goddard Space Flight Center Greenbelt, Maryland

N. D'Amico Institute of Radioastronomy National Research Council Via Fiorentina Villa Fontano, Italy

Larry S. Darken Oxford Instruments, Inc. Oak Ridge, Tennessee

David Dayton ILC Data Device Corporation Bohemia, New York

Timothy R. DeGrado Duke University Medical Center Durham, North Carolina

Alfons Dehé Institut für Hochfrequenztechnik, Technische Universität Darmstadt Muenchen, Germany

Ronald H. Dieck Pratt & Whitney Palm Beach Gardens, Florida

Thomas E. Diller Virginia Polytechnic Institute Blacksburg, Virginia

Madhu S. Dixit Centre for Research in Particle Physics Carleton University Ottawa, Ontario, Canada

James T. Dobbins III Duke University Medical Center Durham, North Carolina

Achim Dreher German Aerospace Center Wessling, Germany

Emil Drubetsky The Fredericks Company Huntington Valley, Pennsylvania

Jacques Dubeau

Centre for Research in Particle Physics Carleton University Ottawa, Ontario, Canada

Maria Eklund Nynas Naphthenics AB Nynashamn, Sweden

M.A. Elbestawi Mechanical Engineering McMaster University Hamilton, Ontario, Canada

Halit Eren Curtin Unversity of Technology Perth, WA, Australia

Alessandro Ferrero Dipartimento di Elettrotecnica Politecnico di Milan Milano, Italy

Richard S. Figliola Department of Mechanical Engineering Clemson University Clemson, South Carolina

Michael Fisch Department of Physics John Carroll University University Heights, Ohio

Jacob Fraden Advanced Monitors Corporation San Diego, California

Randy Frank Semiconductor Products Sector Transporation Systems Group Motorola, Inc. Phoenix, Arizona

Larry A. Franks Sandia National Laboratories Livermore, California

Richard Frayne University of Wisconsin Madison, Wisconsin

K. Fricke Institut für Hochfrequenztechnik, Technische Universität Darmstadt Muenchen, Germany Mark Fritz Denver Instrument Company Arvada, Colorado

Chun Che Fung Curtin University of Technology Perth, WA, Australia

Alessandro Gandelli Dipartimento di Elettrotecnica Politecnico di Milano Milano, Italy

John D. Garrison San Diego State University San Diego, California

Ivan J. Garshelis Magnova, Inc. Pittsfield, Massachusetts

Daryl Gerke Kimmel Gerke Associates, Ltd. Mesa, Arizona

W.A. Gillespie University of Abertay Dundee Dundee, Scotland

Paolo Giordano Rittmeyer Ltd. Zug, Switzerland

Olaf Glük Institut für Schicht-und Ionentechnik Forschungszentrum Julich GmbH Germany

Ron Goehner The Fredericks Company Huntington Valley, Pennsylvania

James Goh Curtin University of Technology Perth, WA, Australia

J.A. Gregory Pennsylvania State University University Park, Pennsylvania

R.E. Griffiths Pennsylvania State University University Park, Pennsylvania Steven M. Grimes

Department of Physics and Astronomy Ohio University Athens, Ohio

G. Grueff Institute of Radioastronomy National Research Council Via Fiorentina Villa Fontano, Italy

J.Y. Gui General Electric Research and Development Center General Electric Company Schenectady, New York

Anthony Guiseppi–Elie Abtech Scientific, Inc. Yardley, Pennsylvania

Reinhard Haak Universitaet Erlangen–Nuernberg Erlangen, Germany

Sean M. Hames Duke University Medical Center Durham, North Carolina

R. John Hansman, Jr. Department of Aeronautics and Astronautics Massachusetts Institute of Technology Cambridge, Massachusetts

Daniel Harrison Department of Physics John Carroll University University Heights, Ohio

H.L. Hartnagel Institut für Hochfrequenztechnik, Technische Universität Darmstadt Muenchen, Germany

Bruce H. Hasegawa University of California San Francisco, California

Emil Hazarian Denver Institute Company Arvada, Colorado

Michael B. Heaney Huladyne Research Palo Alto, California

Albert D. Helfrick Embry–Riddle Aeronautical University Dayton Beach, Florida

David A. Hill National Institute of Standards and Technology U.S. Department of Commerce Boulder, Colorado

Thomas Hossle Rittmeyer Ltd. Zug, Switzerland

C.H. Houpis Air Force Institute of Technology Wright–Patterson AFB, Ohio

Zaki D. Husain Daniel Flow Products, Inc. Bellaire, Texas

Alan L. Huston Naval Research Laboratory Washington, D.C.

Robert M. Hyatt, Jr. Howell Electric Motors Plainfield, New Jersey

Stanley S. Ipson Department of Electronic and Electrical Engineering University of Bradford Bradford, W. Yorkshire, England

Rahman Jamal National Instruments Germany Applications Engineering Munchen, Germany

Ralph B. James Sandia National Laboratories Livermore, California

Victor F. Janas Center for Ceramic Research Rutgers University Piscataway, New Jersey **Roger Jones** Primary Children's Medical Center Salt Lake City, Utah

Brian L. Justus Optical Science Department Naval Research Laboratory Washington, D.C.

Motohisa Kanda National Institute of Standards and Technology Boulder, Colorado

Mohammad A. Karim University of Tennessee, Knoxville Knoxville, Tennessee

Nils Karlsson National Defense Research Establishment Stockholm, Sweden

Sam S. Khalilieh Electrical Engineering Earth Tech Grand Rapids, Michigan

Andre Kholkine Rutgers University Piscataway, New Jersey

William Kimmel Kimmel Gerke Associates, Ltd. Mesa, Arizona

John A. Kleppe Electrical Engineering Department University of Nevada Reno, Nevada

H. Klingbeil Institut für Hochfrequenztechnik, Technische Universität Darmstadt Muenchen, Germany

James Ko Kinetic Sciences Inc. Vancouver, B.C., Canada

Hebert Köchner Universitaet Erlangen–Nuernberg Erlangen, Germany **Wei Ling Kong** Curtin Institute of Technology Perth, WA, Australia

M. Kostic Northern Illinois University DeKalb, Illinois

R.L. Kraft Penn State University University Park, Pennsylvania

V. Krozer Institut für Hochfrequenztechnik, Technische Universität Darmstadt Muenchen, Germany

Shyan Ku Kinetic Sciences Inc. Vancouver, B.C., Canada

H.L. Kwok Penn State University University Park, Pennsylvania

C.K. Laird School of Applied Chemistry Kingston University Kingston Upon Thames, England

Brook Lakew NASA/Goddard Space Flight Center Greenbelt, Maryland

Carmine Landi Università de L'Aquila L'Aquila, Italy

Jacqueline Le Moigne NASA/Goddard Space Flight Center Greenbelt, Maryland

G.E. LeBlanc School of Geography and Geology McMaster University Hamilton, Ontario, Canada

W. Marshall Leach, Jr. School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, Georgia

Kathleen M. Leonard

Department of Civil and Environmental Engineering The University of Alabama in Huntsville Huntsville, Alabama

Yufeng Li Samsung Information Systems America HDD R & D Center San Jose, California

E. B. Loewenstein National Instruments Austin, Texas

Robert Lofthus Xerox Corporation Rochester, New York

Michael A. Lombardi

Time and Frequency Division National Institute of Standards and Technology Boulder, Colorado

Michael Z. Lowenstein Harmonics Limited Mequou, Wisconsin

Albert Lozano–Nieto Commonwealth College Wilkes Barre Campus Penn State University Lehman, Pennsylvania

D.H. Lumb Penn State University University Park, Pennsylvania

Christopher S. Lynch Mechanical Engineering Department The Georgia Institute of Technology Atlanta, Georgia

A.M. MacLeod School of Engineering University of Abertay Dundee Dundee, Scotland **Steven A. Macintyre** Macintyre Electronic Design Herndon, Virginia

Tolestyn Madaj Technical University of Gdansk Gdansk, Poland

Kin F. Man Jet Propulsion Lab California Institute of Technology Pasadena, California

Dimitris E. Manolakis Department of Automation Technological Education Institute Thessaloniki, Greece

Robert T. Marcus Datacolor International Middletown, New Jersey

S. Mariotti Institute of Radioastronomy National Research Council Via Fiorentina Villa Fontano, Italy

Wade M. Mattar The Foxboro Company Foxboro, Massachusetts

J.R. René Mayer Mechanical Engineering Ecole Polytechnique de Montreal Montreal, Quebec, Canada

Edward McConnell Data Acquisition National Instruments Austin, Texas

P.F. Martin University of Abertay Dundee Dundee, Scotland

Robert T. McGrath Department of Engineering Science and Mechanics Pennsylvania State University University Park, Pennsylvania John McInroy Department of Electrical Engineering University of Wyoming Laramie, Wyoming

Douglas P. McNutt The MacNauchtan Laboratory Colorado Springs, Colorado

G.H. Meeten Department of Fluid Chemistry and Physics Schlumberger Cambridge Research Cambridge, England

Adrian Melling Universitaet Erlangen–Nuernberg Erlangen, Germany

Rajan K. Menon Laser Velocimetry Products TSI Inc. St. Paul, Minnesota

Hans Mes Centre for Research in Particle Physics Carleton University Ottawa, Ontario, Canada

John Mester W.W. Hansen Experimental Physics Laboratory Stanford University Stanford, California

Jaroslaw Mikielewicz Institute of Fluid Flow Machinery Gdansk, Poland

Harold M. Miller Data Industrial Corporation Mattapoisett, Massachusetts

Mark A. Miller Naval Research Laboratory Washington, D.C.

Jeffrey P. Mills Illinois Institute of Technology Chicago, Illinois

Devendra Misra

Electrical Engineering and Computer Science Department University of Wisconsin–Milwaukee Milwaukee, Wisconsin

William C. Moffatt Sandia National Laboratories Livermore, California

Stelio Montebugnoli Institute of Radioastronomy National Research Council Villa Fontano, Italy

Roger Morgan School of Engineering Liverpool John Moores University Liverpool, England

Armelle M. Moulin University of Cambridge Cambridge, England

Jerry Murphy Electronic Measurements Division Hewlett–Packard Colorado Springs, Colorado

Steven A. Murray SPAWAR Systems Center San Diego, California

Soe-Mie F. Nee Research and Technology Division U.S. Naval Air Warfare Center China Lake, California

Nam-Trung Nguyen Berkeley Sensor and Actuator Center

University of California at Berkeley Berkeley, California

J.V. Nicholas The New Zealand Institute for Industrial Research and Development Lower Hutt, New Zealand

Seiji Nishifuji Electrical and Electronic Engineering Yamaguchi University Ube, Japan John A. Nousek Department of Astronomy and Astrophysics Pennsylvania State University University Park, Pennsylvania

David S. Nyce MTS Systems Corp. Cary, North Carolina

Peter O'Shea Department of Computer and Electrical Engineering Royal Melbourne Institute of Technology Melbourne, Victoria, Australia

F. Gerald Oakham Centre for Research in Particle Physics Carleton University Ottawa, Ontario, Canada

P. Åke Öberg Department of Biomedical Engineering Linkoping University Hospital Linkoping, Sweden

Chima Okereke Independent Consultant Formerly of Department of Electronic and Electrical Engineering University of Bradford Bradford, W. Yorkshire, U.K

John G. Olin Sierra Instruments, Inc. Monterey, California

A. Orfei Institute of Radioastronomy National Research Council Via Fiorentina Villa Fontano, Italy

P. Ottonello Dipartimento di Fisica Universita di Genova Genova, Italy **M. Pachter** Air Force Institute of Technology Wright–Patterson AFB, Ohio

Behrooz Pahlavanpour The National Grid Company Leatherhead, Surrey, England

Ramón Pallás-Areny Universitat Politecnica de Catalunya Barcelona, Spain

Ronney B. Panerai University of Leicester Leicester Royal Infirmary Leicester, U.K.

Franco Pavese CNR Instituto di Metrologia "G. Colonnetti" Torino, Italy

Peder C. Pedersen Electrical and Computer Engineering Worcester Polytechnic Institute Worcester, Massachusetts

Teklic Ole Pedersen Linkoping Universitet Linkoping, Sweden

B.W. Petley National Physical Laboratory Middlesex, U.K.

Rekha Philip-Chandy School of Engineering Liverpool John Moores University Liverpool, England

Thad Pickenpaugh AFRL/SNHI Wright–Patterson AFB, Ohio

Charles P. Pinney Pinney Technologies, Inc. Albuquerque, New Mexico

Luca Podestà University of Rome "La Sapieriza" Rome, Italy **Rodney Pratt** University of South Australia Adelaide, S. Australia

Per Rasmussen GRAS Sound and Vibration Vedback, Denmark

R.P. Reed Proteun Services Albuquerque, New Mexico

Shyam Rithalia Department of Rehabilitation University of Salford Salford, U.K.

Gordon W. Roberts Department of Electrical Engineering McGill University Montreal, Quebec, Canada

Stephen B.W. Roeder Department of Chemistry San Diego State University San Diego, California

Herbert M. Runciman Pilkington Optronics Glasgow, Scotland, U.K.

Terry L. Rusch Marshfield Medical Research Foundation Tampa, Florida

Ricardo Saad University of Toronto Toronto, Ontario, Canada

Giancarlo Sacerdoti University of Rome "La Sapieriza" Rome, Italy

Ahmad Safari Department of Ceramic Science and Engineering Rutgers University Piscataway, New Jersey **Robert J. Sandberg** Mechanical Engineering Department University of Wisconsin Madison, Wisconsin

Ravi Sankar Department of Electrical Engineering University of South Florida Tampa, Florida

Meyer Sapoff MS Consultants Princeton, New Jersey

Kalluri R. Sarma Advanced Displays Department Honeywell, Inc. Phoenix, Arizona

Michael J. Schöning Institut für Schicht-und Ionentechnik Forschungszentrum Julich GmbH Germany

Fritz Schuermeyer USAF Wright Laboratory Wright–Patterson AFB, Ohio

Stuart Schweid Xerox Corporation Rochester, New York

Patricia J. Scully School of Engineering Liverpool John Moores University Liverpool, England

R.A. Secco The University of Western Ontario Ontario, Canada

James M. Secord Geodesy and Geomatics Engineering University of New Brunswick Fredericton, N.B., Canada

DeWayne B. Sharp Shape of Things San Luis Obispo, California **Kanai S. Sheh** Radiation Monitoring Devices, Inc. Watertown, Massachusetts

Norman F. Sheppard, Jr. Gamera Bioscience Corporation Medford, Massachusetts

Christopher J. Sherman Merrimack, New Hampshire

F. Greg Shinskey Process Control Consultant N. Sandwich, New Hampshire

K.C. Smith University of Toronto Toronto, Ontario, Canada

Michael R. Squillante Radiation Monitoring Devices, Inc. Watertown, Massachusetts

Jan Stasiek Mechanical Engineering Department Technical University of Gdansk Gdansk, Poland

Mark A. Stedham Electrical and Computer Engineering University of Alabama at Huntsville Huntsville, Alabama

Robert Steer Frequency Devices Haverhill, Massachusetts

Robert J. Stephenson University of Cambridge Cambridge, England

T.J. Sumner Imperial College London, England

Haiyin Sun Coherent Auburn Group Auburn, California

Mark Sun NeoPath, Inc. Redmond, Washington

Peter H. Sydenham

University of Šouth Australia Mawsons Lakes, South Australia and University College, London London, UK

Micha Szyper University of Mining and Metallurgy Cracow, Poland

Shogo Tanaka Electrical and Electronic Engineering Yamaguchi University Ube, Japan

Nitish V. Thakor Biomedical Engineering Department Johns Hopkins University Medical School Baltimore, Maryland

David B. Thiessen California Institute of Technology Pasadena, California

Richard Thorn School of Engineering University of Derby Derby, U.K.

Marion Thust Institut für Schicht-und Ionentechnik Forschungszentrum Julich GmbH Germany

G. Tomassetti Institute of Radioastronomy National Research Council Via Fiorentina Villa Fontano, Italy Michael F. Toner Nortel Networks Nepean, Ontario, Canada

E.E. Uzgiris General Electric Research and Development Center General Electric Company Schenectady, New York

Sander van Herwaarden Xensor Integration Delft, The Netherlands

Hans-Peter Vaterlaus Instrument Department Rittmeyer Ltd. Zug, Switzerland

Ramanapathy Veerasingam Penn State University University Park, Pennsylvania

Herman Vermariën Laboratory of Physiology Vrije Universiteit Brussels, Belgium

James H. Vignos The Foxboro Company Foxboro, Massachusetts

Gert J.W. Visscher Institute of Agricultural and Environmental Engineering Wageningen, The Netherlands

David Wadlow Sensors Research Consulting, Inc. Basking Ridge, New Jersey William A. Wakeham Imperial College London, England

Anbo Wang Bradley Department of Electrical Engineering Virgina Tech Blacksburg, Virginia

Donald J. Wass Daniel Flow Products, Inc. Houston, Texas

Mark E. Welland University of Cambridge Cambridge, England

Grover C. Wetsel Erik Jonsson School of Engineering and Computer Science University of Texas at Dallas Richardson, Texas

Hessel Wijkstra University Hospital Nijmegen Nijmegen, The Netherlands

Jesse Yoder Automation Research Corporation Dedham, Massachusetts

Bernhard Günther Zagar Electrical Engineering Technical University Graz Graz, Austria

James A. Zagzebski Department of Medical Physics University of Wisconsin Madison, Wisconsin

Contents

Section I Measurement Characteristics

- 1 Charateristics of Instrumentation R. John Hansman, Jr.
- 2 Operational Modes of Instrumentation Richard S. Figliola
- 3 Static and Dynamic Characteristics of Instrumentation Peter H. Sydenham
- 4 Measurement Accuracy Ronald H. Dieck
- 5 Measurement Standards DeWayne B. Sharp

Section II Spatial Variables Measurement

- 6 Displacement Measurement, Linear and Angular
 - 6.1 Resistive Displacement Sensors Keith Antonelli, James Ko, and Shyan Ku
 - 6.2 Inductive Displacement Sensors Halit Eren
 - 6.3 Capacitive Sensors—Displacement Halit Eren and Wei Ling Kong
 - 6.4 Piezoelectric Transducers and Sensors Ahmad Safari, Victor F. Janas, Amit Bandyopadhyay, and Andrei Kholkine
 - 6.5 Laser Interferometer Displacement Sensors Bernhard Günther Zagar
 - 6.6 Bore Gaging Displacement Sensors Viktor P. Astakhov
 - 6.7 Time-of-Flight Ultrasonic Displacement Sensors Teklic Ole Pedersen and Nils Karlsson
 - 6.8 Optical Encoder Displacement Sensors J. R. René Mayer
 - 6.9 Magnetic Displacement Sensors David S. Nyce
 - 6.10 Synchro/Resolver Displacement Sensors Robert M. Hyatt, Jr. and David Dayton
 - 6.11 Optical Fiber Displacement Sensors Richard O. Claus, Vikram Bhatia, and Anbo Wang
 - 6.12 Optical Beam Deflection Sensing Grover C. Wetsel

^{© 1999} by CRC Press LLC

- 7 Thickness Measurement John C. Brasunas, G. Mark Cushman, and Brook Lakew
- 8 Proximity Sensing for Robotics R.E. Saad, A. Bonen, K.C. Smith, and B. Benhabib
- 9 Distance W. John Ballantyne
- 10 Position, Location, Altitude Measurement
 - 10.1 Altitude Measurement Dimitris E. Manolakis
 - 10.2 Attitude Measurement Mark A. Stedham, Partha B. Banerjee, Seiji Nishfuji, and Shogo Tanaka
 - 10.3 Inertial Navigation Halit Eren and C.C. Fung
 - 10.4 Satellite Navigation and Radiolocation Halit Eren and C.C. Fung
 - 10.5 Occupancy Detection Jacob Fraden
- 11 Level Measurement Detlef Brumbi
- 12 Area Measurement Charles B. Coulbourn and Wolfgang P. Buerner
- 13 Volume Measurement René G. Aarnink and Hessel Wijkstra
- 14 Angle Measurement Robert J. Sandberg
- 15 Tilt Measurement Adam Chrzanowski and James M. Secord
- 16 Velocity Measurement Charles P. Pinney and William E. Baker
- 17 Acceleration, Vibration, and Shock Measurement Halit Eren

Section III Time and Frequency Measurement

- 18 Time Measurement Michael A. Lombardi
- 19 Frequency Measurement Michael A. Lombardi

Section IV Mechanical Variables Measurement — Solid

- 20 Mass and Weight Measurement Mark Fritz and Emil Hazarian
- 21 Density measurement Halit Eren

^{© 1999} by CRC Press LLC

- 22 Strain Measurement Christopher S. Lynch
- 23 Force Measurement M.A. Elbestawi
- 24 Torque and Power Measurement Ivan J. Garshelis
- 25 Tactile Sensing R.E. Saad, A. Bonen, K. C. Smith, and B. Benhabib

V Mechanical Variables Measurement — Fluid

26 Pressure and Sound Measurement

- 26.1 Pressure Measurement Kevin H.-L. Chau
- 26.2 Vacuum Measurement Ron Goehner, Emil Drubetsky, Howard M. Brady, and William H. Bayles, Jr.
- 26.3 Ultrasound Measurement Peder C. Pedersen

27 Acoustic Measurement Per Rasmussen

28 Flow Measurement

- 28.1 Differential Pressure Flowmeters Richard Thorn
- 28.2 Variable Area Flowmeters Adrian Melling, Herbert Köchner, and Reinhard Haak
- 28.3 Positive Displacement Flowmeters Zaki D. Husain and Donald J. Wass
- 28.4 Turbine and Vane Flowmeters David Wadlow
- 28.5 Impeller Flowmeters Harold M. Miller
- 28.6 Electromagnetic Flowmeters Halit Eren
- 28.7 Ultrasonic Flowmeters Hans-Peter Vaterlaus, Thomas Hossle, Paolo Giordano, and Christophe Bruttin
- 28.8 Vortex Shedding Flowmeters Wade M. Mattar and James H. Vignos
- 28.9 Thermal Mass Flow Sensors Nam-Trung Nguyen
- 28.10 Coriolis Effect Mass Flowmeters Jesse Yoder
- 28.11 Drag Force Flowmeters Rekha Philip-Chandy, Roger Morgan, Patricia J. Scully

29 Point Velocity Measurement

- 29.1 Pitot Probe Anemometry John A. Kleppe
- 29.2 Thermal Anemometry John G. Olin
- 29.3 Laser Anemometry Rajan K. Menon
- 30 Viscosity Measurement G. E. Leblanc, R. A. Secco, M. Kostic
- 31 Surface Tension Measurement David B. Thiessen, Kin F. Man

^{© 1999} by CRC Press LLC

VI Mechanical Variables Measurement — Thermal

32	Temperature Measurement 32.1 Bimaterials Thermometers Robert J. Stephenson, Armelle M. Moulin, and Mark F. Welland Reserve J. Stephenson, Armelle M. Moulin,
	32.2 Resistive Thermometers Jim Burns
	32.3 Thermistor Thermometers Meyer Sapoff
	32.4 Thermocouple Thermometers <i>R. P. Reed</i>
	32.5 Semiconductor Junction Thermometers Randy Frank
	32.6 Infrared Thermometers Jacob Fraden
	32.7 Pyroelectric Thermometers Jacob Fraden
	32.8 Liquid-in-Glass Thermometers J.V. Nicholas
	32.9 Manometric Thermometers Franco Pavese
	32.10 Temperature Indicators Jan Stasiek, Tolestyn Madaj, Jaroslaw Mikielewicz
	32.11 Fiber-Optic Thermometers Brian Culshaw
33	Thermal Conductivity Measurement William A. Wakeham and Marc J. Assael
34	Heat Flux Thomas E. Diller
35	Thermal Imaging Herbert M. Runciman

36 Calorimetry Measurement Sander van Herwaarden

VII Electromagnetic Variables Measurement

37 Voltage Measurement

- 37.1 Meter Voltage Measurement Alessandro Ferrero
- 37.2 Oscilloscope Voltage Measurement Jerry Murphy
- 37.3 Inductive Capacitive Voltage Measurement Cipriano Bartoletti, Luca Podestà, and Giancarlo Sacerdoti
- 38 Current Measurement Douglas P. McNutt
- **39 Power Measurement** *Pasquale Arpaia, Francesco Avallone, Aldo Baccigalupi, Claudio De Capua, Carmine Landi*
- 40 Power Factor Measurement Michael Z. Lowenstein
- 41 Phase Measurement Peter O'Shea

^{© 1999} by CRC Press LLC

- 42 Energy Measurement Arnaldo Brandolini and Alessandro Gandelli
- 43 Electrical Conductivity and Resistivity Michael B. Heaney
- 44 Charge Measurement Saps Buchman, John Mester, and T. J. Sumner
- 45 Capacitance and Capacitance Measurements Halit Eren and James Goh
- 46 Permittivity Measurement Devendra K. Misra
- 47 Electric Field Strength David A. Hill and Motohisa Kanda
- 48 Magnetic Field Measurement Steven A. Macintyre
- 49 Permeability and Hysteresis Measurement Jeff P. Anderson and Richard J. Blotzer
- 50 Inductance Measurement Michał Szyper
- 51 Immittance Measurement Achim Dreher
- 52 Q Factor Measurement Albert D. Helfrick
- 53 Distortion Measurement Michael F. Toner and Gordon W. Roberts
- 54 Noise Measurement W. Marshall Leach, Jr.
- 55 Microwave Measurement A. Dehé, K. Beilenhoff, K. Fricke, H. Klingbeil, V. Krozer, H. L. Hartnagel

VIII Optical Variables Measurement

56 Photometry and Radiometry

- 56.1 Photoconductive Sensors Fritz Schuermeyer and Thad Pickenpaugh
- 56.2 Photojunction Sensors Michael R. Squillante and Kanai S. Shah
- 56.3 Charge-Coupled Devices J.A. Nousek, M.W. Bautz, B.E. Burke, J.A. Gregory, R.E. Griffiths, R.L. Kraft, H.L. Kwok, D.H. Lumb
- 57 Densitometry Measurement Joseph H. Altman
- 58 Colorimetry Robert T. Marcus

^{© 1999} by CRC Press LLC

- 59 Optical Loss Halit Eren
- 60 Polarization Measurement Soe-Mie F. Nee
- 61 Refractive Index Measurement G. H. Meeten
- 62 Turbidity Measurement Daniel Harrison and Michael Fisch
- 63 Laser Output Measurement Haiyin Sun
- 64 Vision and Image Sensors Stanley S. Ipson and Chima Okereke

IX Radiation Measurement

- 65 Radioactivity Measurement Bert M. Coursey
- 66 Radioactivity Measurement Larry A. Franks, Ralph B. James, and Larry S. Darken
- 67 Charged Particle Measurement John C. Armitage, Madhu S. Dixit, Jacques Dubeau, Hans Mes, and F. Gerald Oakham
- 68 Neutron Measurement Steven M. Grimes
- 69 Dosimetry Measurement Brian L. Justus, Mark A. Miller, and Alan L. Huston

X Chemical Variables Measurement

70 Composition Measurement

- 70.1 Electrochemical Composition Measurement Michael J. Schöning, Olaf Glück, and Marion Thust
- 70.2 Thermal Composition Measurement Mushtaq Ali, Behrooz Pahlavanpour, and Maria Eklund
- 70.3 Kinetic Methods E.E. Uzgiris and J.Y. Gui
- 70.4 Chromatography Composition Measurement Behrooz Pahlavanpour, Mushtaq Ali, and C.K. Laird
- 71 pH Measurement Norman F. Sheppard, Jr. and Anthony Guiseppi–Elie
- 72 Humidity and Moisture Measurement Gert J.W. Vischer

^{© 1999} by CRC Press LLC

73 Environmental Measurement

- 73.1 Meteorological Measurement John D. Garrison and Stephen B. W. Roeder
- 73.2 Air Pollution Measurement Michael Bennett
- 73.3 Water Quality Measurement Kathleen M. Leonard
- 73.4 Satellite Imaging and Sensing Jacqueline Le Moigne and Robert F. Cromp

XI Biomedical Variables Measurement

- 74 Biopotentials and Electrophysiology Measurement Nitish V. Thakor
- 75 Blood Pressure Measurement Shyam Rithalia, Mark Sun, and Roger Jones
- 76 Blood Flow Measurements Per Ask and P. Åke Öberg
- 77 Ventilation Measurement L. Basano and P. Ottonello
- 78 Blood Chemistry Measurement Terry L. Rusch and Ravi Sankar
- 79 Medical Imaging James T. Dobbins III, Sean M. Hames, Bruce H. Hasegawa, Timothy R. DeGrado, James A. Zagzebski, and Richard Frayne

XII Signal Processing

- 80 Amplifiers and Signal Conditioners Ramón Pallás-Areny
- 81 Modulation David M. Beams
- 82 Filters Rahman Jamal and Robert Steer
- 83 Spectrum Analysis and Correlation
 83.1 FFT Spectrum Analysis and Correlation Ronney B. Panerai
 83.2 RF/Microwave Spectrum Analysis A. Ambrosini, C. Bortolotti, N. D'Amico, G. Grueff, S. Mariotti, S. Montebugnoli, A. Orfei, and G. Tomassetti
- 84 Applied Intelligence Processing Peter H. Sydenham and Rodney Pratt
- 85 Analog-to-Digital Converters E. B. Loewenstein
- 86 Computers A. M. MacLeod, P.F. Martin, and W.A. Gillespie

^{© 1999} by CRC Press LLC

- 87 Telemetry Albert Lozano-Nieto
- 88 Sensor Networks and Communication Robert M. Crovella
- 89 Electromagnetic Compatibility
 89.1 Grounding and Shielding in Industrial Electronic Systems
 Daryl Gerke, and William Kimmel
 - 89.2 EMI and EMC Test Methods Jeffrey P. Mills

XIII Displays

- 90 Human Factors in Displays Steven A. Murray, Barrett S. Caldwell
- 91 Cathode Ray Tube Displays Christopher J. Sherman
- 92 Liquid Crystal Displays Kalluri R. Sarma
- 93 Plasma-Driven Flat Panel Displays Robert T. McGrath, Ramanapathy Veerasingam, William C. Moffatt, and Robert B. Campbell
- 94 Electroluminescent Displays William A. Barrow
- 95 Light-Emitting Diode Displays Mohammad A. Karim
- 96 Reading/Recording Devices 96.1 Graphic Recorders *Herman Vermariën* 96.2 Data Acquisition Systems *Edward McConnell* 96.3 Magnetic and Optical Recorders *Yufeng Li*

XIV Control

- 97 PID Control F. Greg Shinskey
- 98 Optimal Control Halit Eren
- 99 Electropneumatic and Electrohydraulic Instruments: Modeling of Electrohydraulic and Electrohydrostatic Actuators
 M. Pachter and C. H. Houpis
- 100 Explosion-Proof Instruments Sam S. Khalilieh

^{© 1999} by CRC Press LLC

101 Measurement and Identification of Brush, Brushless, and dc Stepping Motors Stuart Schweid, Robert Lofthus, John McInroy

Appendix Units and Conversions B. W. Petley